2020 年度日本政府(文部科学省)奨学金留学生選考試験 QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MEXT) SCHOLARSHIP 2020

学科試験問題 EXAMINATION QUESTIONS

高等専門学校留学生 COLLEGE OF TECHNOLOGY STUDENTS

数学

MATHEMATICS

注意 ☆試験時間は60分

PLEASE NOTE: THE TEST PERIOD IS 60 MINUTES

			(2020)
Nationality	No.		
Name	(Please print full name, underlining family name)	Marks	

- 1 Answer the following questions and write your answers in the boxes provided.
 - 1) Solve the equation $x^3 3x 2 = 0$.

MATHEMATICS

x =		

2) Solve the equation $\cos 2x + 4\cos x + 3 = 0$ $(0 \le x \le 2\pi)$.

x =		

3) Express $\left| \pi - \frac{20}{7} \right| + \left| \pi - \frac{23}{7} \right|$ without the absolute value symbols.

4) Solve the equation $3^{2x+2} - 10 \cdot 3^x + 1 = 0$.

x =		

5) Solve the inequality $\log_2 x + \log_2(x-1) > \log_2(x+3)$.

6) Calculate the area of the triangle whose vertices are (1, 1, 1), (-1, 0, 1) and (1, -1, -1) in the *xyz*-space.

7) Let $\alpha : x - 3y + 2z + 7 = 0$. Let l be the line which is perpendicular to α and goes through the point (0, 0, 0). Find the intersection point (x, y, z) of α and l.

$$x = y = z =$$

8) Find all tangent lines to the curve $y = x \sin x$ which goes through the point (0, 0).

9) Calculate the infinite series $\sum_{n=1}^{\infty} a_n$ for the sequence $\{a_n\}$ defined as follows:

$$a_1 = 2, \ 2a_{n+1} + a_n = 0.$$

10) Calculate
$$\lim_{x \to -0} \frac{1 - \cos 4x}{|x|}$$

11) Let
$$f(x) = \log_{\sqrt{e}} \sqrt{x+1}$$
. Calculate $f'(x)$.

$$f'(x) =$$

12) Calculate
$$\int_{-\pi}^{\pi} e^{2x} \sin x \, dx.$$

2 For real numbers a, b, (b > 0), let $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ satisfy $A^2 + 2A = -4I$. Answer the following questions and write your answers in the boxes provided.

1) Find a and b.

$$a = b =$$

2) Calculate A^{-1} .

4-1)]
$A^{-1} = \left(\begin{array}{c} \end{array} \right)$)	

3) Calculate $(A^{-1})^{3n}$.

$$(A^{-1})^{3n} = \left(\begin{array}{c} \\ \end{array} \right)$$

3 Let $C_1: y = x^2 + 2x$ and $C_2: y = x^2 - 4x + 6$. Answer the following questions and write your answers in the boxes provided.

1) Find the intersection point (x, y) of C_1 and C_2 .

x =	<i>au</i> —	
<i>x</i> –	y =	

2) Find the common tangent line l of C_1 and C_2 .

3) Calculate the area of the region bounded by C_1 , C_2 and l.

